

Failure Modes and Effects Analysis (FMEA) for Radiation Medicine R. Alfredo C. Siochi, PhD

Outline

An Introduction to FMEA

HOSPITALS&CLINICS

 \bigcirc

- FMEA for radiotherapy workflow improvement
- Reverse FMEA for implementation of new technology

FMEA after an accident – what can we learn from the NY Times?

MOC PQI – hope you stay awake!

www.dilbert.com

FMEA

- Failure Modes and Effects Analysis
 FM: What could go wrong? And how?
 E: What are the consequences?
 Analyze: Probability of Occurrence,
 - Detectability, Severity

HOSPITALS&CLINICS

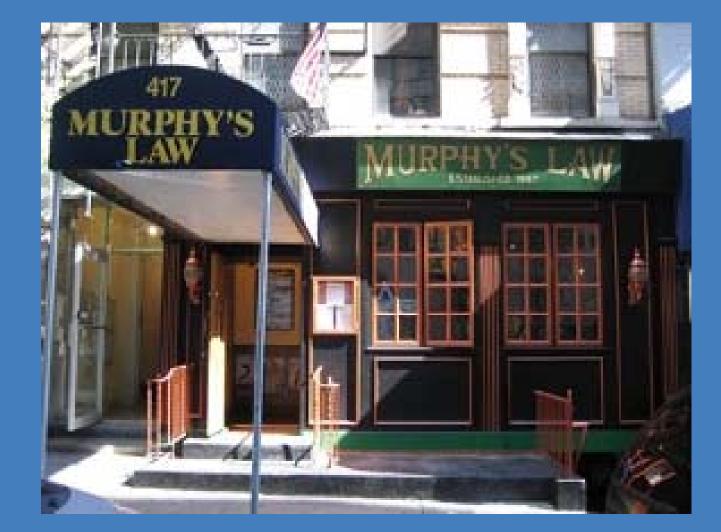
Types of FMEA

- Process FMEA
- Design FMEA
- System FMEA
- Product FMEA
- Basic Methodology is the same

Failure Modes

- What could go wrong?
- And how!

HOSPITALS&CLINICS



- Requires Brainstorming Team
 - familiar with the subject of their analysis (process, system, product)
 - Identify everything at this stage
 - (even seemingly trivial or improbable items)

Ne.

51k 440

10.55

Murphy's Law

If anything can go wrong, it will!

Effects

- For each failure mode, identify the effect(s)
- These can be effects that happen to
 - Patients
 - Staff

IVERSITY / IOWA HOSPITALS&CLINICS

> Other processes or workflows (e.g. the effect may not be a problem in and of itself but if it is allowed to propagate it could become significant)

Analyze

IVERSITY / IOWA HOSPITALS&CLINICS

What is the <u>Severity</u> of the effect?

No harm = 1, Lethal = 10

What is the probability of <u>Occurrence</u>?

not likely = 1, certainty = 10

What is the likelihood that the failure mode will escape <u>Detection</u> before it causes an effect?

Always detected = 1, undetectable = 10

Risk Priority Number

- RPN = Severity x Occurrence x Detection
- Ranges from 1 to 1000
- Higher numbers have greater priority
- Multiple failure modes exist in a system, which one is the most critical to address?
- Risk management should consider regulatory issues

Proposed TG100 Rating Scales

UNIVERSITY / IOWA HOSPITALS&CLINICS University of Iowa Health Care

Rank	Occurrence (O)		Severity(S)		Detectability (D)
	Qualitative	Frequency	Qualitative	Categorization	Estimated Probability of failure going undetected in %
1	Failure unlikely	1/10,000	No effect		0.01
2		2/10,000	Inconvenience	Inconvenience	0.2
3	Relatively few failures	5/10,000			0.5
4		1/1,000	Minor dosimetric error	Suboptimal plan or treatment	1.0
5		<0.2%	Limited toxicity or underdose	Wrong dose, dose distribution, location or volume	2.0
6	Occasional failures Repeated failures Failures inevitable	<0.5%			5.0
7		<1%	Potentially serious toxicity or underdose		10
8		<2%			15
9		<5%	Possible very serious toxicity	Very wrong dose, dose distribution, location or volume	20
10		>5%	Catastrophic		>20

[RACS1]A high value for detectability actually means that it is less likely to be detected. This can be confusing for a novice.

Risk Management

- Reduce the RPN
- Re-design the product or Improve Processes in order to:
 - Remove the failure mode, or
 - Increase the detectability of the failure mode, or
 - Reduce the severity by changing the effect

Risk Management by Signage?

THE DOG HAS A GUN AND REFUSES TO TAKE HIS MEDICATION

www.classicalvalues.com/archives/2009_10.html

A more serious example...

- Failure Mode: HDR Door Interlock Fails Effect: Unintended radiation exposure
- Severity: ? Depends on source
- Occurrence: ? Depends on interlock reliability
- Detection: ? Depends on system design
- Risk Management: Daily QA of door interlock and all emergency switches

Multiple Fault Tolerance

- Many backup systems in case one fails
- redundant in purpose
- May be redundant in design
- Examples

HOSPITALS&CLINICS

- Signage
- Emergency stop button
- Emergency Power off button

Part II: FMEA for RT Workflow Improvement

- A well run clinic has well established, understood, and implemented processes
- Processes affect the total environment of the clinic: business, technical, clinical aspects
- FOCUS here is on the <u>safety of the clinical</u> process

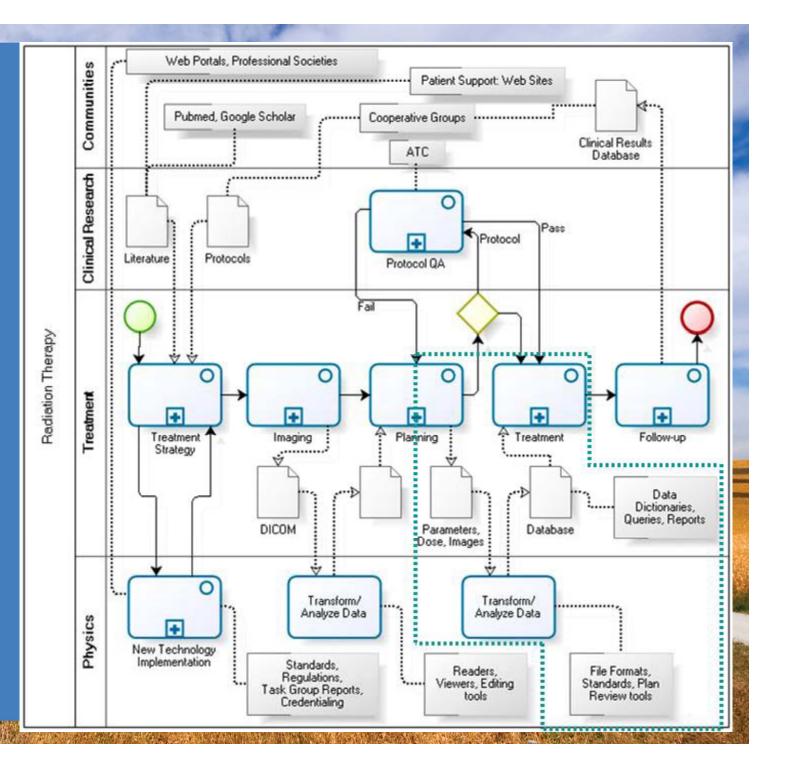
Process FMEA

- Process Map or Process tree
- Include Control Points
- Analyze sub processes
- Create Fault trees
- Mitigate Hazards

Process Hazard Mitigation

http://safety.lovetoknow.com/Funny_Safety_Pictures~1

Process Mapping

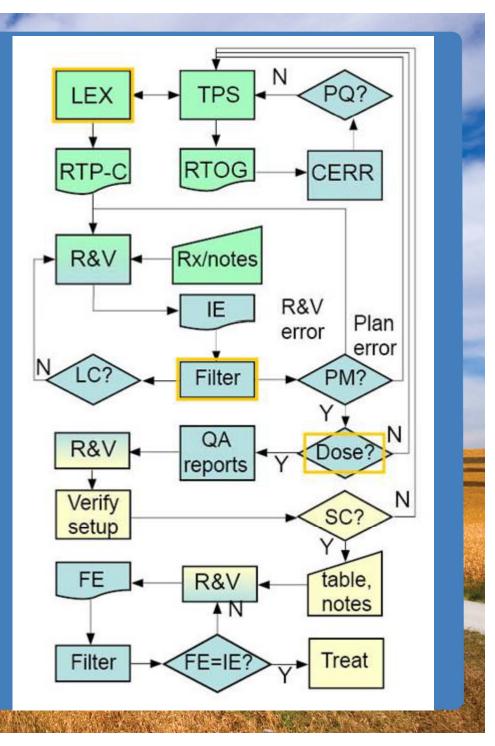

- Flowcharts to follow a product from beginning ("raw materials") to end (product in the hands of consumer)
- Radiotherapy: Very Data Driven
- One method: follow the data to create the process map

Data Flow in RO

HOSPITALS&CLINICS

University of Iowa Health Care

*Fig. 11.1 from Siochi, Information resources for radiation oncology, Ch. 11 of a forthcoming book: Informatics in Radiation Oncology, G. Starkschall, B. Curran, editors.



Clinical Work Flow, paperless checks **Physicists Dosimetrists/Physicians** Therapists

In-House Software

Adapted from Fig 5. Siochi, et al. Radiation therapy plan checks in a paperless clinic, J. App. Clin. Med. Phys., 10(1):43-62.

Understand Your Process

- You can't determine failure modes if your process is a black box
- Break down process into single actions
- Identify interfaces between actions
- Identify resources for each action
- Determine failure modes
- Mitigate Hazards

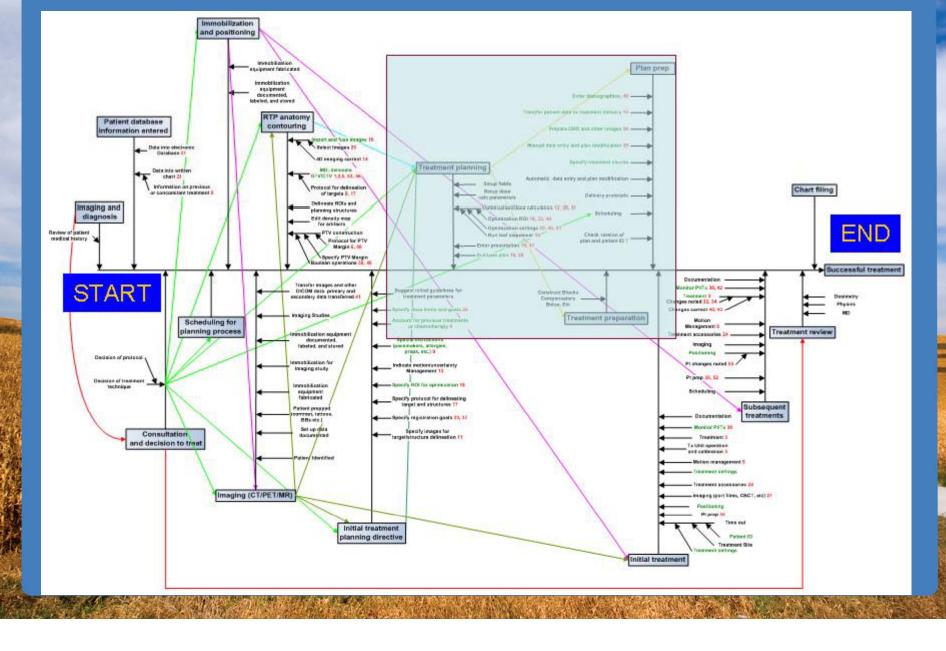
Failure Modes: Device vs Process

- Example: Radiosurgery Ring Placement
 - Device: Plastic Support Snaps
 - Process: Pin was over-tightened
- Device Failure Mode:
 - Intrinsic Device Design Problem
 - May be mitigated by processes
- Process Failure Mode:
 - Sequence not followed
 - Step Forgotten
 - Step done incorrectly
 - Sequence produces undesirable side effects

Process Failure Mode

http://www.darwinawards.com/

Example: IMRT Plan Preparation Process


Example Process for FMEA

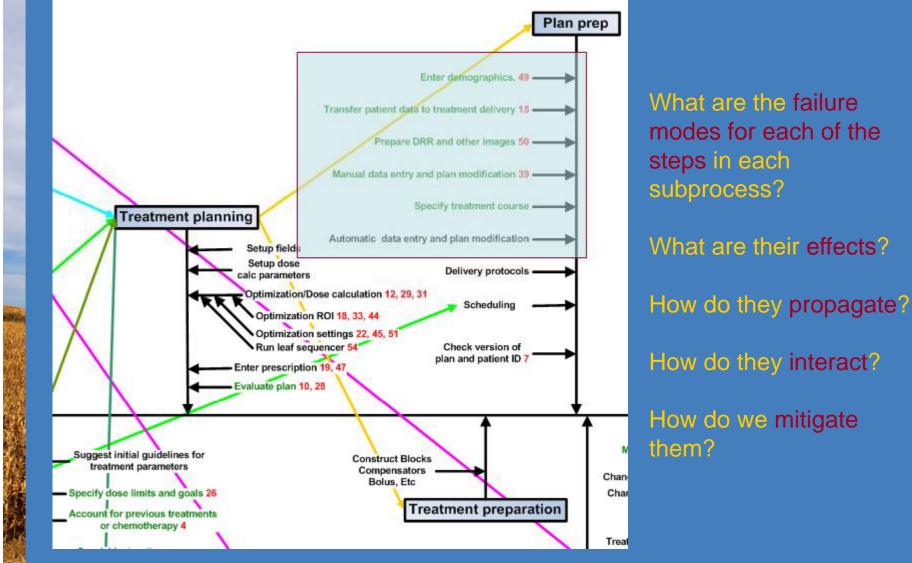
IVERSITY / IOWA HOSPITALS&CLINICS

- Sub process of the IMRT treatment process
- Each clinic has to evaluate their own process

TG 100 IMRT Process Tree- Draft

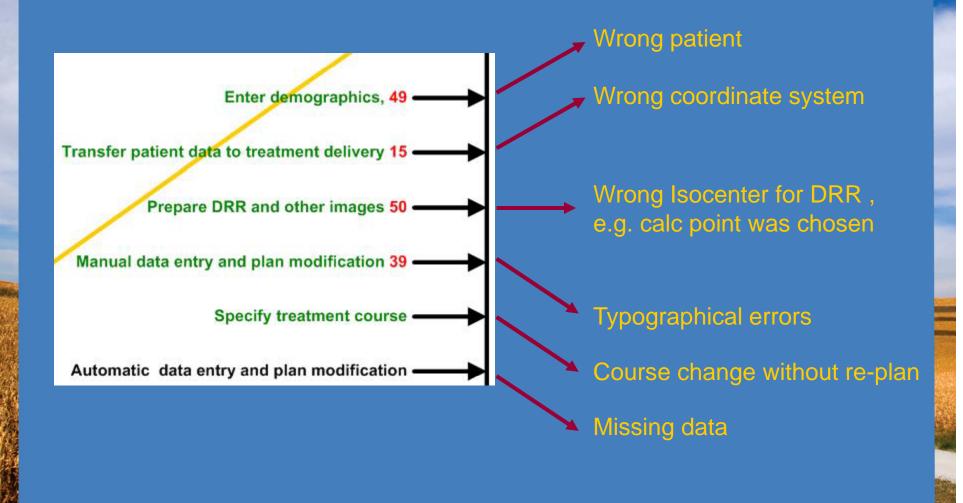
UNIVERSITY / IOWA HOSPITALS&CLINICS

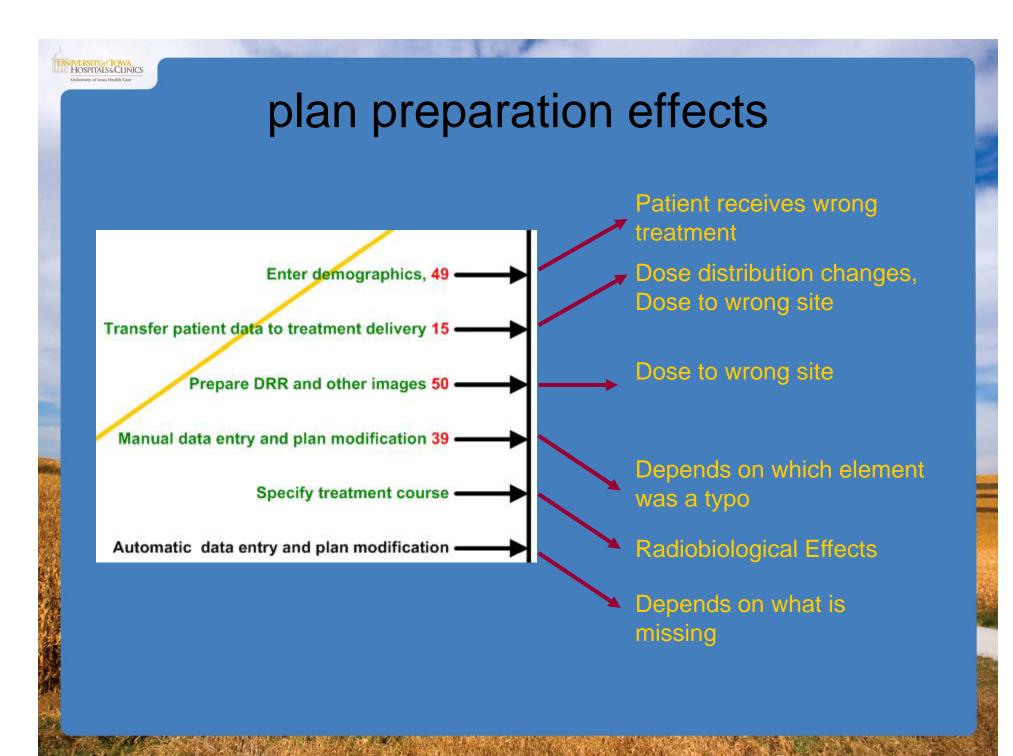
Where do I begin?

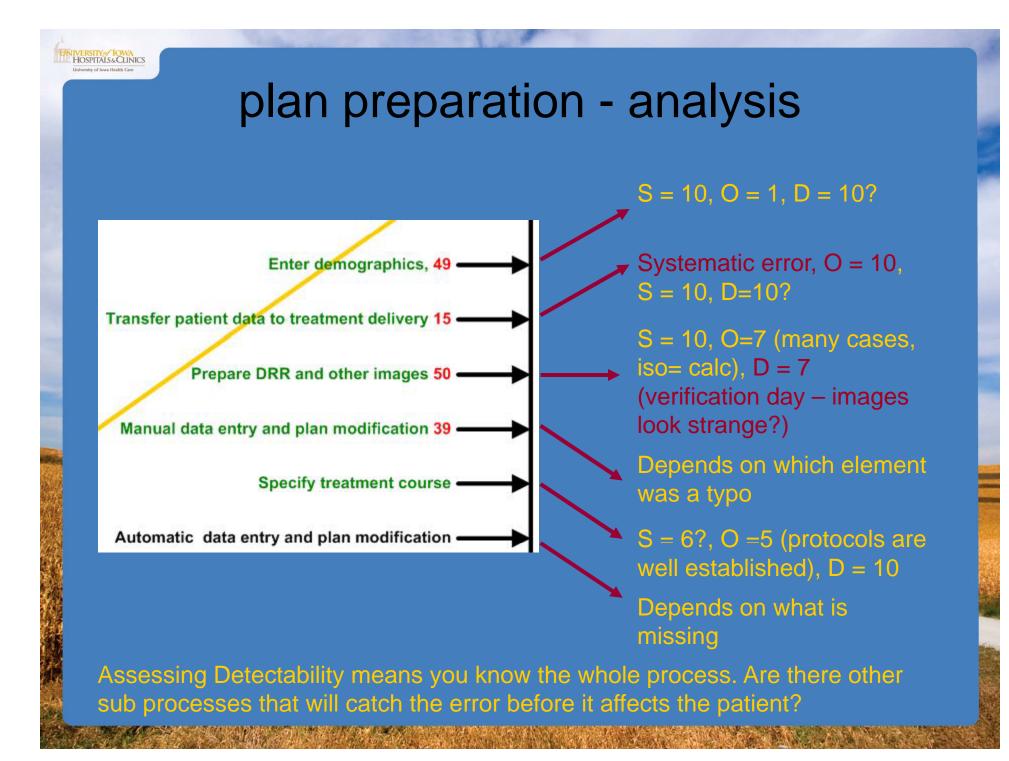


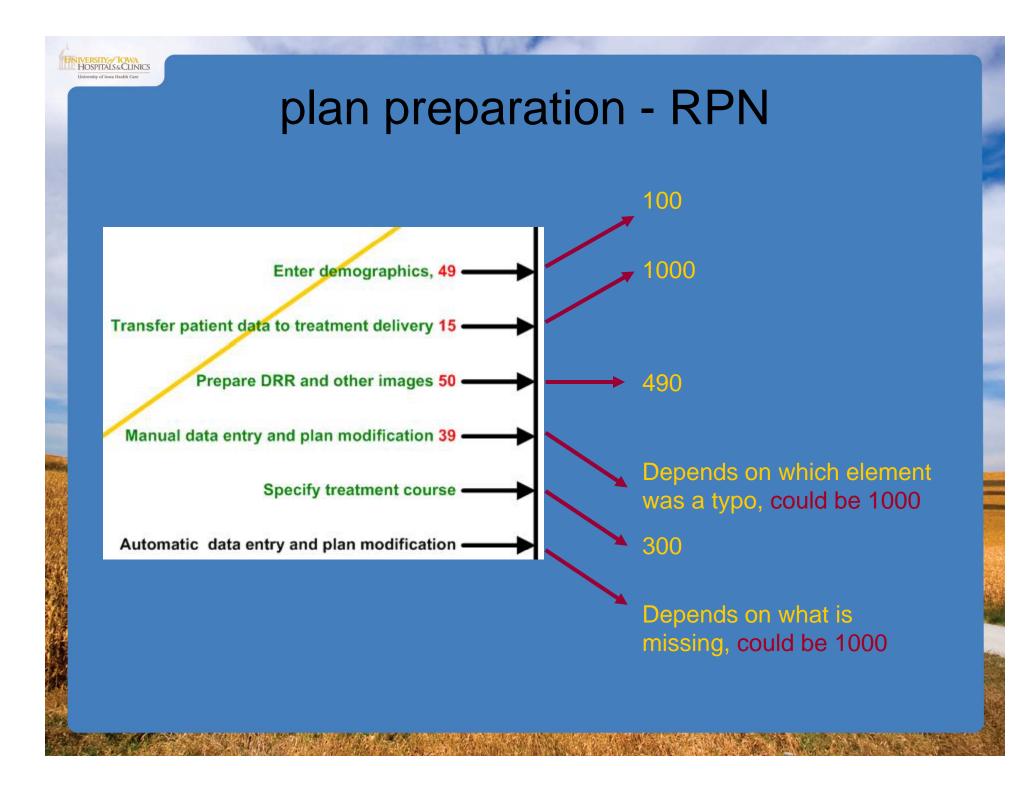
http://safety.lovetoknow.com/Funny_Safety_Pictures~14

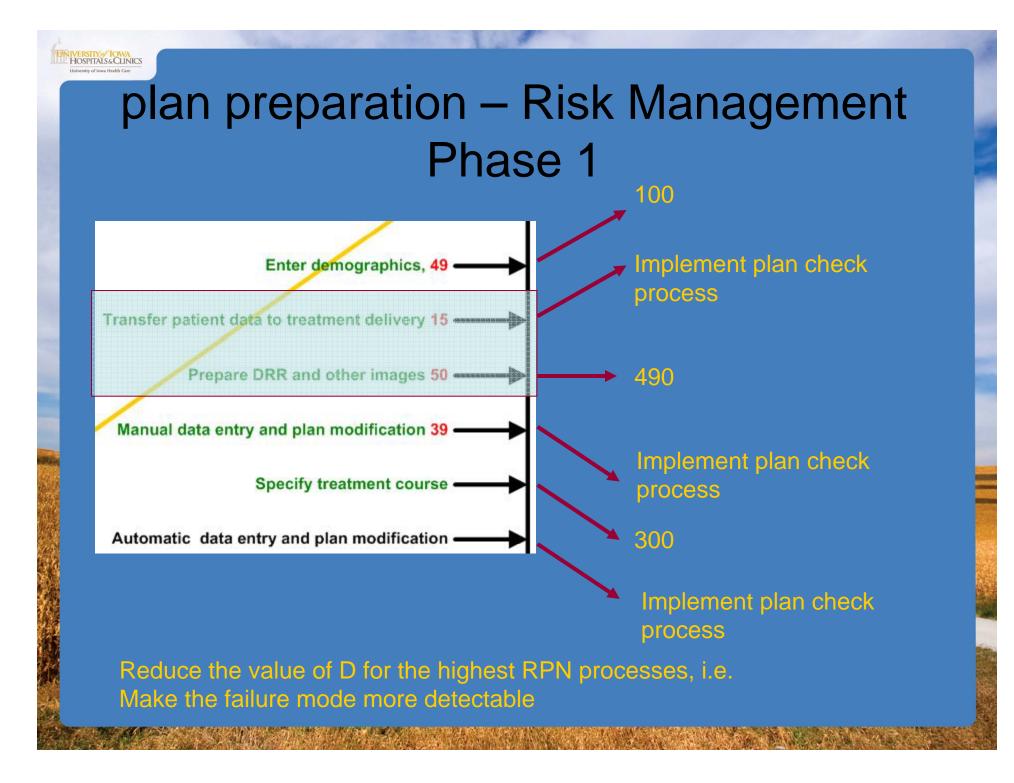
TAKE IT ONE STEP AT A TIME- WORK WITH SUBPROCESSES

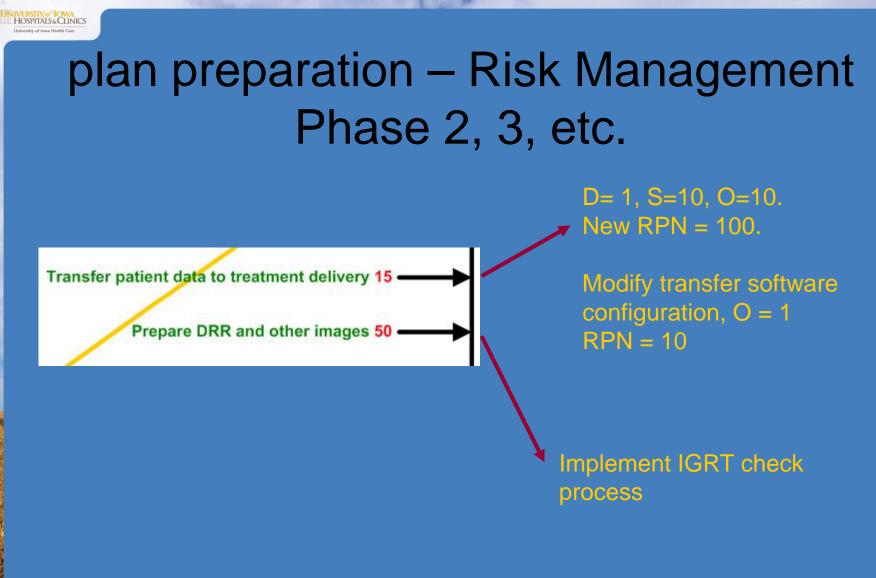

Sub Process – plan preparation


HOSPITALS&CLINICS University of Iowa Health Care





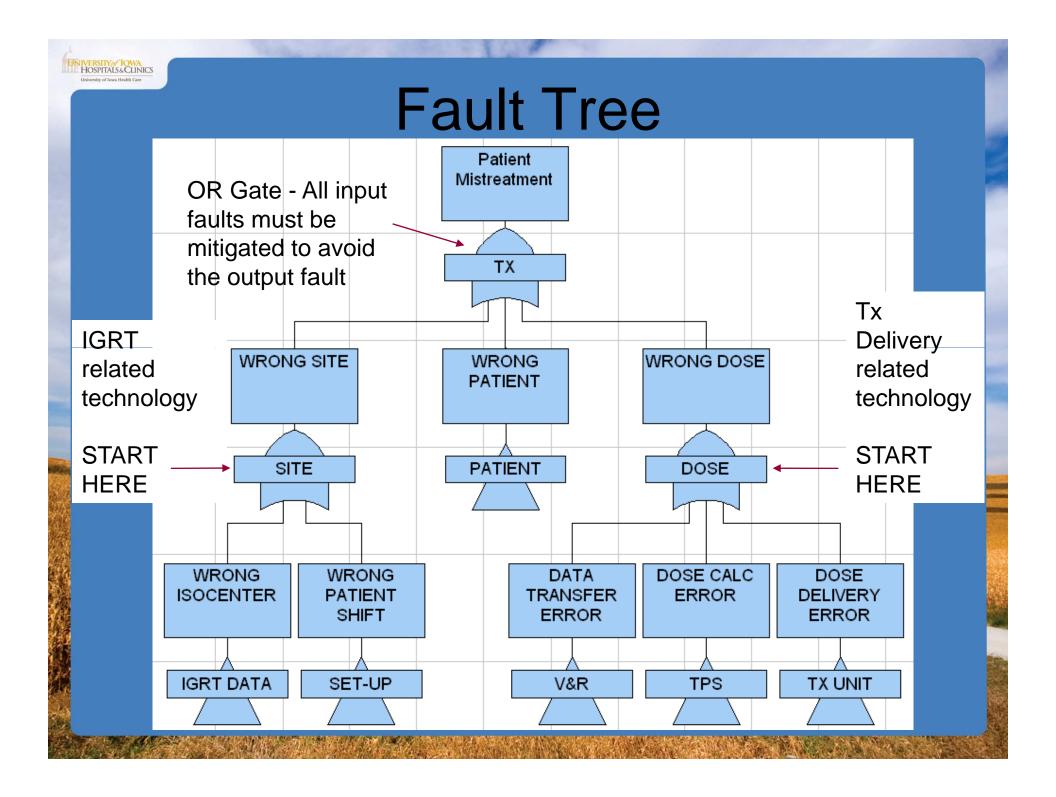

plan preparation failure modes



Mitigate the next highest RPN values. Adjust the RPN values of mitigated items. Consider other mitigation steps to reduce D or O. S will not change for the given effect.

Overwhelmed?

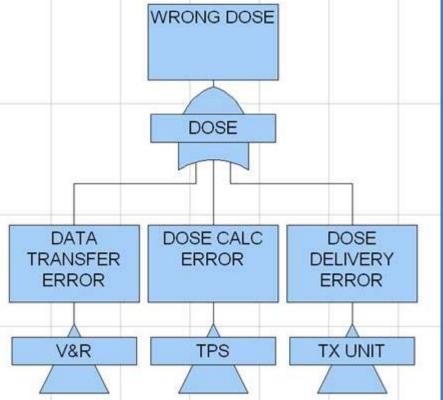
http://safety.lovetoknow.com/Funny_Safety_Pictures~6


Part III – Reverse FMEA for implementation of new technology

- New– unfamiliar hard to know failure modes
- Start with "Effects"
- Prioritize by effects no need for RPN
- Then use fault tree analysis.
 - requires learning more about failure modes, but the learning is now guided.
- Examine fault tree to build in mitigations
 - Process design
 - Device Modification

Generic RT Effects

- Wrong Patient
- Wrong Site
- Wrong Dose Distribution
- Which of these top level elements does your new technology affect directly?
- Develop that element in greater detail



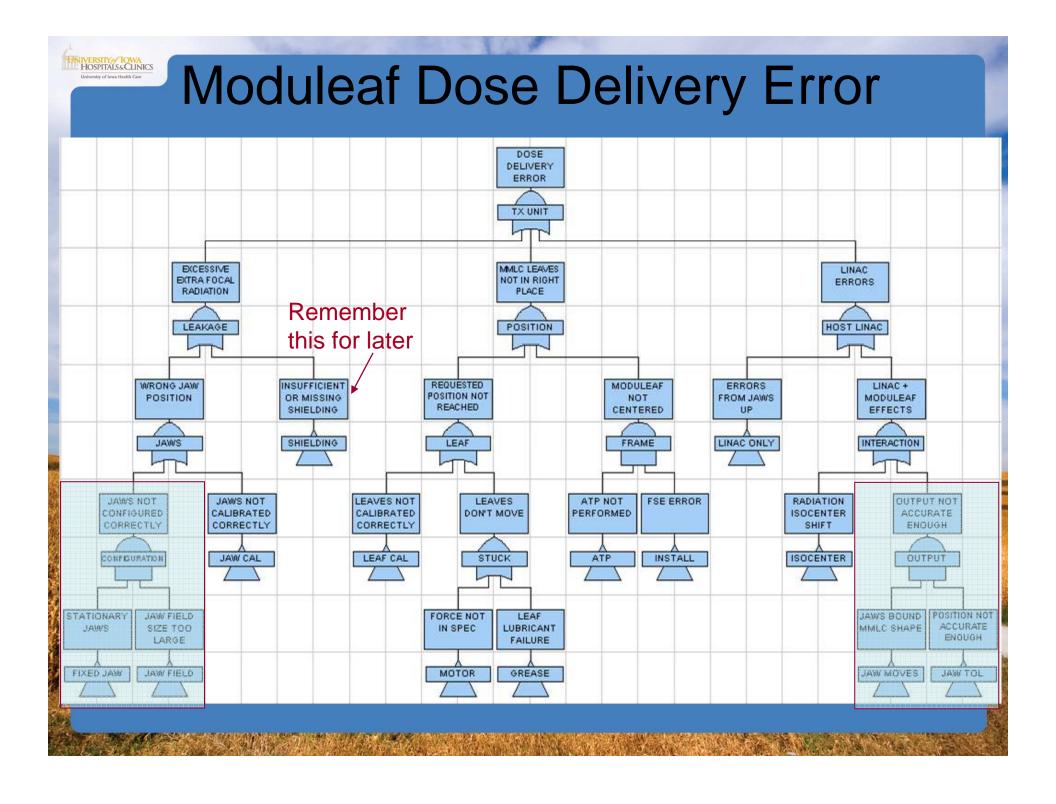
Learn about your device

Ask yourself questions about how your device works and how it will be integrated with other devices in your clinical workflow

How does the new technology communicate treatment parameters to other subsystems?

How does the new technology deliver dose?

What are the special considerations for modeling the device or treatment technique in the planning system ?


Learn about your device

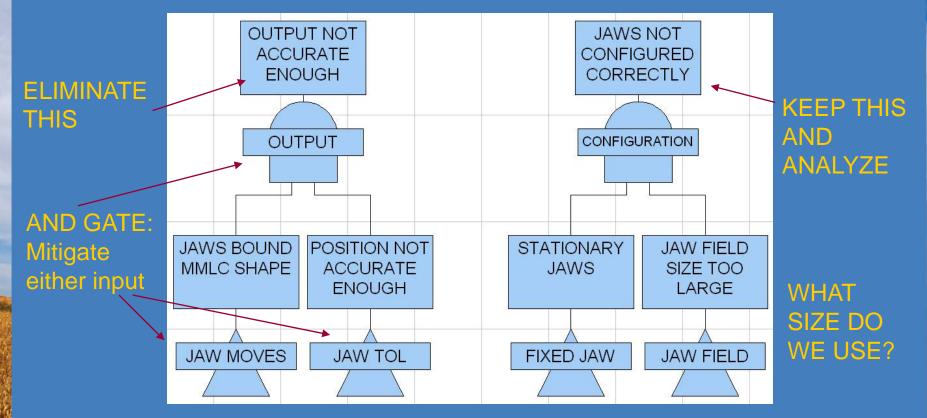
UNIVERSITY / IOWA HOSPITALS & CLINICS University of Iowa Health Care

Example: Moduleaf - Hardware

- Add on mini-MLC
- 40 leaf pairs
- Leaf width = 2.5 mm
- Leaves move from 6 cm to + 6 cm
- Max field size is 12 x 10
- Leaf position tolerance = 0.5 mm
- Closed leaves parked 5.5 cm away from central axis
- Rounded leaf tips
- Slight tilt from divergence on leaf side

USING THE FAULT TREE

- Device configuration decision: given options, which one presents the least risk?
- Is the fault true for the device?
- Test procedures: should be general enough to test all possibilities for the error
- Clinical Workflow Design: write procedures that reduce occurrence of error or increase detection of error

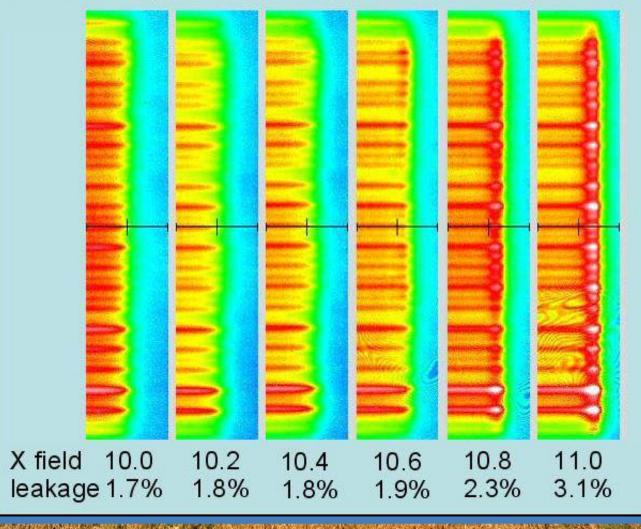


DECISIONS? SLOW DOWN

Jaw Configuration Decision

HOSPITALS & CLINICS

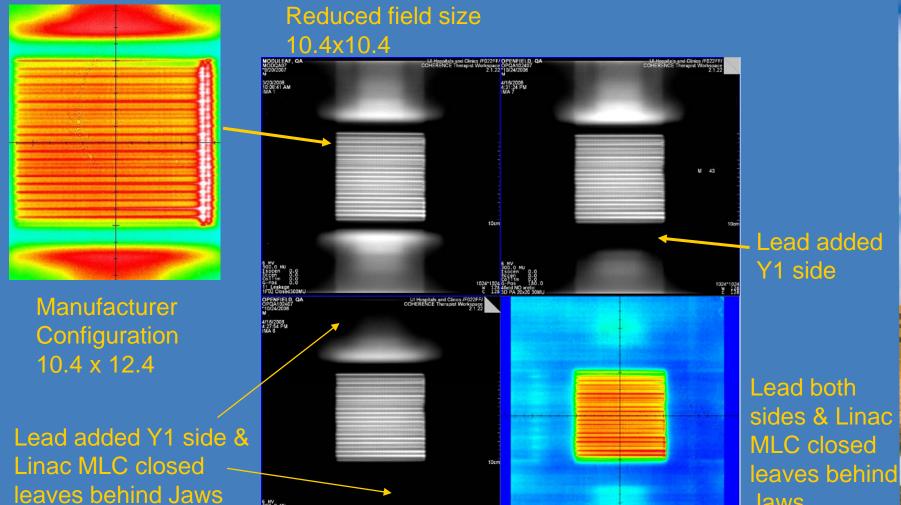
We decided to keep the Jaws fixed since we have no control over the jaw tolerance of 2 mm. For small fields, a 10% or greater error can occur due to positioning inaccuracy. The errors from using a fixed jaw can be reduced to a much lower value (dose uncertainty due to leakage modeling in TPS).


MODULEAF field size

- Decided on 10.4 x 10.4
- With jaw tolerance this means jaws range in position from 5 to 5.4
- Closed leaves at 5.5 cm are blocked
- Jaws don't invade mMLC fields up to 10x10
- Output factor change minimal

Leakage vs X field size

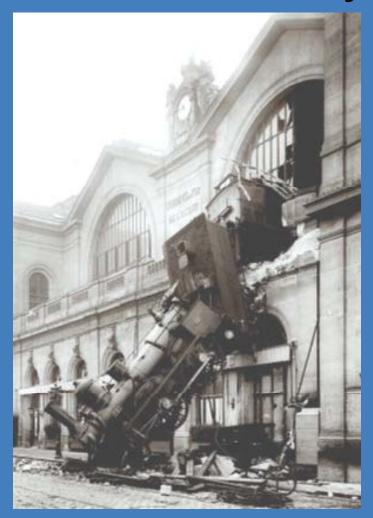
Max Leakage vs X field size, MODULEAF fully closed


Leakage measurement method?

Don't assume anything

- "Gafchromic is expensive, maybe I can just test the 10x12 area"
- Go back to the fault tree
- Remember the item "missing shielding"?
- That could be anywhere
- Test a full field, not just the MMLC field

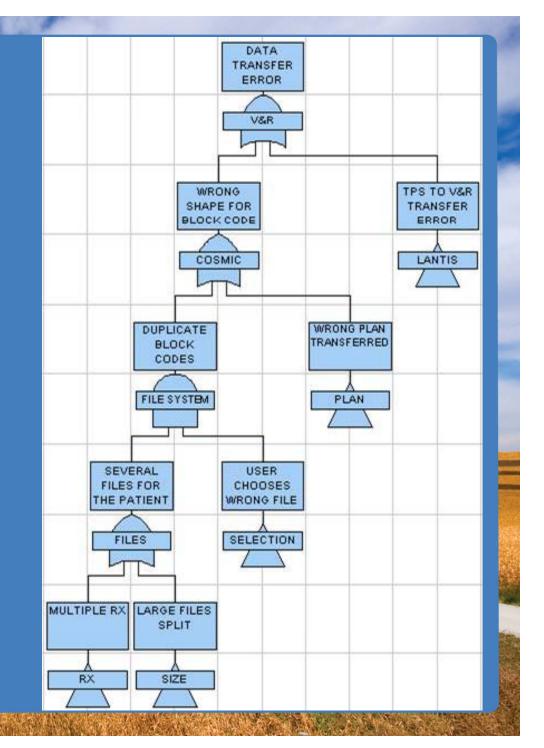
HOSPITALS&CLINICS University of Iowa Health Care



1024-1024 W 128

Jaws

Never Assume Anything


V&R – Data Transfer Error

- Separate fault tree
- Several items were mitigated related to data integrity
- Most significant change we adopted was a process

Data Transfer Error

- LANTIS sends block code to LINAC on DMIP
- Cosmic listens to DMIP
- Cosmic sets leaf positions from the record with the corresponding block code
- BLOCK CODE is crucial

Field shape communication

- Problem: Lantis block code does not have to be unique
- Lantis field IDs are unique
- Moduleaf block codes in separate files for same patient can be the same
- Potential error: wrong Moduleaf shape is chosen
- Mitigation:
 - block code to Lantis field id mapping
 - One file per patient in Cosmic at a time

Documenting the FMEA

article discussion edit history move watch

Moduleaf Failure Modes and Effects Analysis

The typical FMEA involves brainstorming to create a list of Failure Modes. The associated Effects of these failures are assessed in terms of their probability and severity. The need to address a particular failure mode is then determined by a cutoff score for the product of probability and severity.

The design of clinical processes, QA programs and supporting software for the Moduleaf were implicitly developed through the use of a **modified Failure Modes and Effects Analysis** (FMEA). The Effects are first determined and graded. Failure Modes that cause these effects are then determined by brainstorming. This requires a knowledge of the basic clinical workflow required to treat a patient with the Moduleaf. It also requires familiarity with the Moduleaf control software. Changes to the basic workflows are then designed to avoid or minimize the effects of these failures. These changes in turn can create new failure modes, resulting in an iterative cycle of designing, brainstorming, testing the possible failure modes, and addressing those failure modes that are valid concerns.

Another reason for working in reverse, from the effects towards the failure modes, is that the device or process in question may not actually have a given failure mode, and testing needs to be done to determine if in fact a particular type of failure can occur. The flipside of this coin is that one should not assume that a failure mode does not exist just because the manufacturer said so in the manual (this should be part of the ATP) Additionally, there may be other failure modes that one may not think of if the focus of the brainstorming is only on the questionable properties of the device or process. By starting with the effects and listing failure modes associated with these effects rather than with the device or process (yet within the context of the device or process), one is more likely to generate a thorough list of properties that should be tested and, if proven to be a true failure mode, mitigated. This also allows us to organize our analysis process by ranking the effects in the order of importance (considering both the severity of the effect and regulatory compliance issues).

This page serves as a summary of the Failure Modes and the mitigations of their corresponding effects that were considered in the clinical implementation of the MODULEAF. Links are provided to procedures that address the failure modes. As items are added to the list, new procedures and/or links to existing procedures will be added to document that the item has been addressed.

Contents [hide]

1 Patient receives wrong dose distribution 1.1 Cosmic RTPLink plan file corruption 1.2 Wrong Plan Selected 1.3 Wrong Field Selected 1.4 Wrong Moduleaf leaf positions 1.4.1 Wrong coordinate system 142 Leaves not properly calibrated 1.5 Attenuation through devices not accounted for 2 Patient receives dose in the wrong place 2.1 Wrong patient position 2.2 Inaccurate bite block calibration 2.3 Inaccurate laser positions 2.4 MODULEAF Isocenter not coincident with Linac isocenter 3 Patient treated with excessive leakage 3.1 Moduleaf mis-alignment 3.2 leakage between the closed ends of a leaf pair 3.3 Leakage pattern can not be modeled in the planning system 4 Patient misses a treatment 4.1 MODULEAF down

4.2 Linac down

UIHC Rad Onc Department WIKI: Moduleaf Project, FMEA section:

The Effects are listed first, with the faults beneath them. Mitigations are described in each section for each fault, with links to the clinical procedures, design changes, and configuration decisions.

Documentation - II

Link to our
field
naming
convention
and block
code
mapping

Link to
procedure
that
involves
this
convention

step 2 of Pinnacle Planning Considerations for all plans.

3.2 leakage between the closed ends of a leaf pair		
3.3 Leakage pattern can not be modeled in the planning system		
4 Patient misses a treatment		
4.1 MODULEAF down		
4.2 Linac down		
4.3 Patient does not show up 5 Patient receives a partial treatment		
5.1 MODULEAF error in the middle of a treatment		
5.2 Linac error in the middle of a treatment		
6 Patient's plan not done		
6.1 Unforeseen circumstance or planning situation		
7 STILL UNDER CONSTRUCTION		
Patient receives wrong dose distribution		[edit]
Coomic BTDI ink plan file corruntion		F
Cosmic RTPLink plan file corruption		[edit]
	ord, deleting field_defs, mlc_defs). Cosmic picked up on every one of these problems due to the crc at the end of e Ids for each rx_def. However, exchanging a whole file went undetected. Hence, step 6 of the pre-treatment QA req	
Wrong Plan Selected		[edit]
Mokiple files for the same patient should be avoided. In all cases, adopted: Moduleaf Block Codes. See also Step 4 of the plan chec	unique block codes should be used, even across plans and files for the same patient. A block code convention wa k.	IS
Wrong Field Selected		[edit]
	e MODULEAF field shape, but the block codes for these fields are the same. Step 4 of the plan check requires a Id use the field ID to block code mapping scheme to enforce unique block codes.	block
Wrong Moduleaf leaf positions		[edit]
Wrong coordinate system		[edit]
	metrical both left and right and top to bottom) such as an arrow pointing to the bottom right should be done prior to Cosmic operating system and configuration files that define the coordinate system are intact.	l.
Leaves not properly calibrated		[edit]
An MLC strip test (step 13 of pre-treatment QA) should be run or accidental change has occured.	n prior to treatment and the EPID images or light field images should be analyzed to ensure no gross miscalibratio	n, drift
Attenuation through devices not accounted for		[edit]
	hat was not modeled within the planning system, the device will attenuate the beam and produce a different dose t can help determine if the beam is being clipped. Alternatively, a fully open MODULEAF can be used as a footprin	nt. See

Follow your documented procedures!

RESPECT THE RATTLESNAKE'S PRIVACY PLEASE STAY ON THE TRAIL

http://safety.lovetoknow.com/Funny_Safety_Pictures~3

Block Code Mapping

Field ID Structure

- 5 characters long
- has the form cnAxx
 - c = course number
 - omitted if c = 1
 - set to a letter for QA fields (Q for course 1, R for course 2, etc.)
 - n = prescription number
 - corresponds to chronological order of prescription within the course
 - imaging fields are assigned a value of zero (not counted)
 - QA fields have the same prescription number as the prescription that they are checking on
 - A = Beam letter
 - capitalized, from A to Z (maximum of 26 beams)
 - Lantis will treat lowercase and uppercase as the same when considering ID uniqueness
 - You can extend your number of beams (e.g. multiple sub-arcs) by using 0-9 and),!,@,#,\$,%,^,&,*,(.
 - corresponds to an initial estimate of the order of delivery
 - xx = segment number
 - from 01 to 99 (leading zero is needed)
 - corresponds to an initial estimate of the optimal order of segment delivery

Patient Treatment Fields

- Field ID examples
 - Course 1, first boost, 7 beams, each with 12 segments
 - c=1, n = 2, beams A through G, segments 01 to 12
 - (1)2A01, (1)2A02,...,2A12, 2B01,..., 2G12
 - note that we omit the (1) of the course number to be consistent with current naming conventions
 - Course 2, initial plan, 9 beams, each with 6 segments
 - c=2, n = 1, beams A through I, segments 01 to 06 21A01, 21A02,...,21A06, 21B01,..., 21I06
 - (9299 is incompatible with block codes, see below. The highest field ID might be 8l25 since we typically don't have more than 25 segments for a given beam and more than 9 beams.)
- Note that each RX DEF can then have 2574 unique IDs. For a given RX DEF we will rarely have more than 100 fields. If we limit the number to 676, then we can map these IDs to block codes
- the block codes unique

Our convention for

field IDs makes it

number of beams,

Mapping a unique

block code makes

Lantis field ID to

the Moduleaf

segments, Rx

naming Lantis

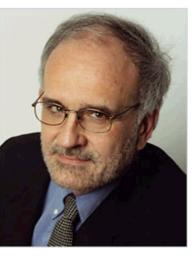
- nAxx -> MMnyyy, where yyy is the alphabetical sort order of Axx e.g. 1A01 to 1A09, 1B01 to 1B11 -> MM1001 to MM1009, MM1010 to MM1020
- note that this limits our allowed field IDs
- we can only have 8 different RX DEFs for a given course.
- the block codes may have to be recycled for later courses
- the mapping, more generically is cnAxx -> MMnyyy where
 - 1. c is the course number, not needed for the first course

Mapping scheme

- possible to keep field IDs uniquecaveats noted for

Segue to NY Times

- What if Moduleaf block codes were not sent?
- What if we did not check it?
- A 10x10 field opening with high MU!
 Fractionated IMRT (350 500 MU)
 SRS (2000 to 5000 MU)
- NY Times article: from descriptions, it is IMRT without MLC shapes


IV: FMEA after an accident

- Reported Effects are extremely severe

 (OR they wouldn't get so much attention!)
- High Priority
- We should analyze the Failure Modes
- How does this relate to our practice?
 - Do we mitigate this FM?
 - Is the mitigation effective?

Pulitzer Prize Winner reports on radiotherapy accidents

Walt Bogdanich became the investigations editor for the Business and Finance desk of The New York Times in January 2001. He was named an assistant editor for the paper's newly expanded Investigative Desk in 2003.

Before joining The Times in 2001, he was an investigative producer for "60 Minutes" on CBS and for ABC News. Previously, he worked as an investigative reporter for The Wall Street Journal in New York and Washington. He also worked for The Cleveland Press and The Plain Dealer.

Born in Chicago on Oct. 10, 1950, Mr. Bogdanich graduated from the University of Wisconsin in 1975 with a degree in political science. He received a master's degree in journalism from Ohio State University in 1976.

In 2008, Mr. Bogdanich won the Pulitzer Prize for Investigative Reporting for the series "A Toxic Pipeline," which tracked how dangerous and poisonous pharmaceutical ingredients from China have flowed into the global market. Mr. Bogdanich also won the Pulitzer Prize in 2005 for National Reporting for his series "Death on the Tracks," which examined the safety record of the U.S. railroad industry, and in 1988 for Specialized Reporting, for his articles in The Wall Street Journal on substandard medical laboratories.

RELATED: A Toxic Pipeline: Coverage by Walt Bogdanich |Send an E-Mail to Walt Bogdanich

Selected Articles By Walt Bogdanich

THE RADIATION BOOM **As Technology Surges, Radiation Safeguards Lag** By WALT BOGDANICH While new treatments are more accurate, errors in software and operation are more difficult to detect. January 27, 2010 | US | SERIES

THE RADIATION BOOM Radiation Offers New Cures, and Ways to Do Harm By WALT BOGDANICH

http://topics.nytimes.com/top/reference/timestopics/people/b/walt_bogdanich/index.html

Example 1: Failure Modes Reported

"In another case, an unnamed medical facility told federal officials in 2008 that Philips Healthcare made treatment planning software with an obscure, automatic default setting, causing a patient with tonsil cancer to be mistakenly irradiated 31 times in the optic nerve."

Is this IGRT related? What was the failure mode? Wrong isocenter chosen?

Some clues as to what happened? "Many of these mistakes could have been caught had deer checking accords been followed, accident reports show. But there is also a growing realization among those who work with this new technology that some safety procedures are outdated."

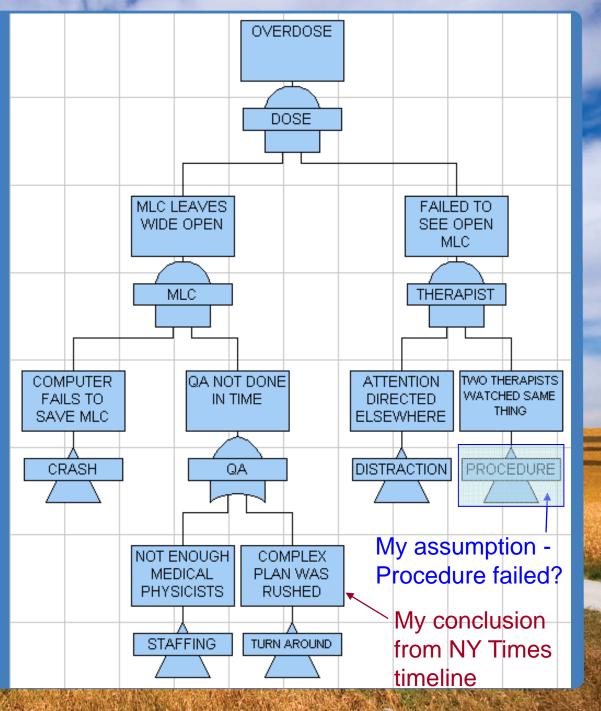
Is your safety procedure effective?

HOSPITALS&CLINICS

Example 2: Effect and FM

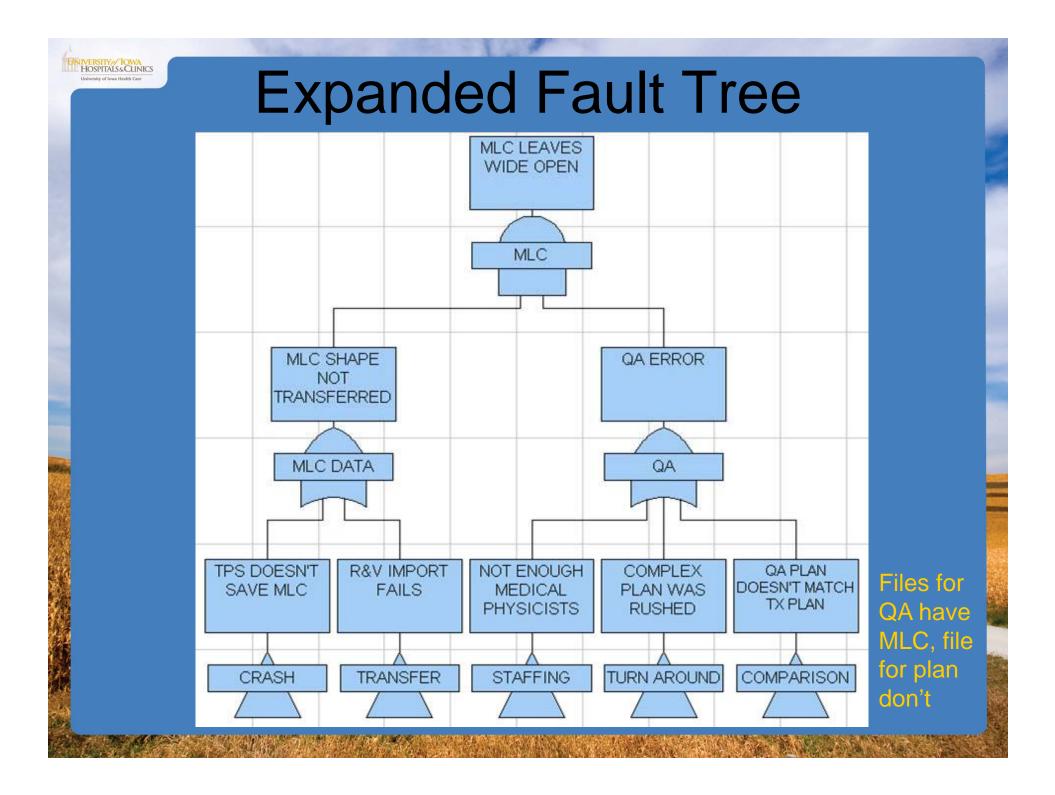
"...his fatal radiation overdose — which left him deaf, struggling to see, unable to swallow, burned, with his teeth falling out, with ulcers in his mouth and throat, nauseated, in severe pain and finally unable to breathe...A New York City hospital treating him for tongue cancer had failed to detect a computer error that directed a linear accelerator to blast his brain stem and neck with errant beams of radiation. Not once, but on three consecutive days."

Example 2: more FM


"The Times found that on 133 occasions, devices used to shape or modulate radiation beams... were left out, wrongly positioned or otherwise misused."

"...I.M.R.T. The unit ... was made by Varian ... The first four had been delivered as prescribed. Now Dr. ...wanted the plan reworked to give more protection to [his] teeth... Shortly after 11 a.m... the computer began seizing up, displaying an error message... system crashes 'are not uncommon with the Varian software, and these issues have been communicated to Varian on numerous occasions.' ... at 12:24 p.m., Dr. approved the new plan ... At 12:57 p.m. — six minutes after yet another computer crash — the first of several radioactive beams was turned on. ...several hours after [he] received his third treatment under the modified plan...she ran a test ... the multileaf collimator... was wide open. ...[he] had received seven times his prescribed dose...When the computer kept crashing, the medical physicist did not realize that instructions for the collimator had not been saved ...hospital waited so long to run the test ... 'a staffing shortage for the medical physicists' ... All the therapists had to do was watch the computer screen - it showed that the collimator was open ... Instead, their eyes were fastened on [him], out of concern that he might vomit into the mask."

NY Times Fault Tree


This could be made more generic and the tree could be expanded

Too Late to do anything?

- By the time the article came out Varian had already issued a fix
- Varian Users found out before the article was published
 Is there a way non-Varian users can hear about these
- HOWEVER: things when Varian users do?
 - Non-Varian users can improve their procedures to prevent such errors
 - Varian users can learn from clinic errors and improve their procedures
 - Extend the fault tree other ways for error to happen?

FINAL WORDS

- FMEA, FAULT TREES organize thoughts
 - Most of us can think of grocery items
 - But if you don't write them down, you will most likely forget something
- FMEA takes time up front
 - Whole Clinic needs to invest time to map their processes and make sure there are control points for hazard mitigation
- REMAIN VIGILANT

The End

Source: KOTV

Thank you for not falling asleep!